پهنهبندی زمینلغزشهای حوضهی رودخانهی گیویچای با استفاده از مدل پرسپترون چندلایه از نوع پیشخور پسانتشار (BP)
نویسندگان
چکیده مقاله:
زمینلغزش نشاندهندهی فرایندهای مورفودینامیک است که در زمینهای شیبدار رخ داده و به واحدهای مسکونی، صنعتی، باغات و زمینهای زراعی آسیب میرساند. در این تحقیق برای پهنهبندی زمینلغزش در حوضهی رودخانه گیویچای از مدل شبکه عصبی پرسپترون چند لایه از نوع پیش خور پسانتشار(BP)استفاده شد. جهت ارزیابی شبکهی عصبی ایجاد شده، دادههای 41 زمینلغزش رخ داده به سیستم ارائه شد. در کنار آن برای پردازش زمینلغزشها در نرمافزار MATLAB،8 لایه متشکل از لایههای شیب، جهت شیب، DEM، لیتولوژی، فاصله از گسل، شبکه هیدروگرافی، کاربری اراضی و پراکنش زمینلغزش با استفاده از مطالعات میدانی، نقشههای توپوگرافی، نقشههای زمینشناسی و تصاویر ماهوارهای در نرمافزار Arc GISترسیم شد. این لایهها جهت تغذیه به شبکهی عصبی ایجاد شده و بر اساس بزرگترین مقدار موجود برای هر لایه نرمالیزه شده و در محدوده بین 1 و صفر قرار گرفتند. سپس دادههای نرمالیزه شده به یک شبکهی عصبی مصنوعی پرسپترون سه لایه پیشخور با الگوریتم پسانتشار خطا تغذیه گردید. دادههای فوق ابتدا در شبکه آموزش دیده شد و سپس مورد آزمایش قرار گرفت. ساختار نهایی شبکه دارای 8 نرون در لایهی ورودی، 20 نرون در لایهی پنهان و 1 نرون در لایهی خروجی میباشد. در این بین 80 درصد اطلاعات برای آموزش و 20 درصد باقیمانده برای آزمایش در نظر گرفته شد. در نهایت با توجه به وزن خروجی، نقشهی پهنهبندی زمینلغزش در پنج رده با خطر خیلی زیاد، زیاد، متوسط، کم و خیلی کم ترسیم گردید. نتایج حاصل نشان داد که ساختار زمینشناسی شکل گرفته از آهکهای کرتاسه و آندزیتهای پرفیری و همچنین دسترسی به منابع رطوبتی بالا باعث شده که ارتفاعات شرقی کوههای بوغروداغ و آلاداغ در محدودهی کوههای تالش از قابلیت بالایی در رخداد زمینلغزش برخوردار شوند.
منابع مشابه
پهنه بندی زمین لغزش های حوضه ی رودخانه ی گیوی چای با استفاده از مدل پرسپترون چندلایه از نوع پیش خور پس انتشار (bp)
زمین لغزش نشان دهنده ی فرایندهای مورفودینامیک است که در زمین های شیب دار رخ داده و به واحد های مسکونی، صنعتی، باغات و زمین های زراعی آسیب می رساند. در این تحقیق برای پهنه بندی زمین لغزش در حوضه ی رودخانه گیوی چای از مدل شبکه عصبی پرسپترون چند لایه از نوع پیش خور پس انتشار(bp)استفاده شد. جهت ارزیابی شبکه ی عصبی ایجاد شده، داده های 41 زمین لغزش رخ داده به سیستم ارائه شد. در کنار آن برای پردازش زم...
متن کاملارایه مدل بهینه ریسک اعتباری فرایند تامین مالی جمعی با استفاده از شبکه عصبی پرسپترون چندلایه (MLP)
هدف مطالعه حاضر، پیشبینی و ارایه مدل ریسک اعتباری جهت سرمایهپذیران تأمین مالی جمعی مبتنی بر بدهی است. با توجه به پیچیدگی ارزیابی ریسک، بهترین معماری شبکه عصبی الگوریتم پرسپترون چند لایه برای شبیهسازی انتخاب شد. جامعه آماری این پژوهش، اطلاعات مالی پرونده اعتباری/تسهیلاتی کلیه مشتریان (506 مورد) یکی از بانکهای کشور مربوط به سال 98-97 است. به منظور معناداری رابطه شاخصهای استخراج شده از نمون...
متن کاملپیش بینی بزرگای زلزله با استفاده از شبکه عصبی پرسپترون چندلایه
به دلیل نواقص موجود در روش های پیشین محاسبه بزرگای زلزله، شبکه عصبی به عنوان یک روش جدید برای این منظور آزمایش می گردد. در این مقاله نوعی شبکه عصبی با نام پرسپترون چندلایه برای پیش بینی بزرگای گشتاوری زلزله مورد استفاده قرار گرفته است. شبکه عصبی پرسپترون شامل سه لایه اصلی با نام های لایه ورودی، لایه پنهان و لایه خروجی است. ورودی های این شبکه شش متغیر مربوط به مکان و زمان وقوع زلزله و همچنین مشخ...
متن کاملتخمین تبخیر روزانه از تشت تبخیر با استفاده از سه شبکه عصبی پرسپترون چندلایه، تابع پایه شعاعی و المانی
متن کامل
ارائه مدلی برای انتخاب سبد بهینه سهام با استفاده از الگوریتم هوش جمعی سالپ و شبکههای عصبی پرسپترون چندلایه
ﻣﻬﻤﺘﺮﯾﻦ دﻏﺪﻏﻪ ﺳﺮﻣﺎﯾﻪﮔﺬاران، اﻓﺰاﯾﺶ ﻣﯿﺰان ﺳﻮد و ﮐﺎﻫﺶ رﯾﺴﮏ درﺑﻮرس ﺑﻮده و ﻫﻤﻮاره ﺑﻪ دﻧﺒﺎل راهکاری جهت ﺑﻬﺘﺮﯾﻦ ﭘﯿﺸﻨﻬﺎد در ﺧﺮﯾﺪ ﺳﻬﺎم هستند، تا ﺑﯿﺸﺘﺮﯾﻦ سود ﺳﺮﻣﺎﯾﻪﮔﺬاری را ﺑﺎﺷﺪ. در تحقیقات اﻧﺠﺎم ﺷﺪه مشاهده می شود که ﻣﺪل رﯾﺎﺿﯽ ﻣﯿﺎﻧﮕﯿﻦ وارﯾﺎﻧﺲ ﻣﺎرﮐﻮﯾﺘﺰ ﯾﮑﯽ از اﺻﻠﯽﺗﺮﯾﻦ راهکارها است اما ﺑﻬﺘﺮ اﺳﺖ ﻣﻌﯿﺎرﻫﺎیی همچون ﭼﻮﻟﮕﯽ با در نظر گرفتن ﭘﺘﺎﻧﺴﯿﻞ آینده ﺳﻬﺎم مورد بررسی قرار گیرد. در اﯾﻦ ﺗﺤﻘﯿﻖ از 20 ﺷﺮﮐﺖ اول از 50...
متن کاملپیش بینی دماهای ماهانه ایستگاه های همدید منتخب استان اصفهان، با استفاده از شبکه عصبی مصنوعی پرسپترون چندلایه
پیش بینی دما از کاربردی ترین برآوردهای عناصر آب و هوایی است. امروزه بخش های کشاورزی و صنعت وابستگی زیادی به شرایط دمایی (آب و هوا) دارند. دما یکی از فراسنج های بسیار مهم آب و هوایی است و از عوامل اصلی هویت آب و هوایی هر ناحیه محسوب می شود. هدف از انجام این پژوهش، مدل سازی برای پیش بینی میانگین دمای ماهانه ایستگاه های منتخب استان اصفهان است؛ از این رو، پس از بررسی طول دوره آماری ایستگاههای موجود...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 12 شماره 36
صفحات 161- 180
تاریخ انتشار 2014-10-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023